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1. Introduction

This research considers only passive vibration isolation. Most

physical structures designed for dynamic environments have isolator

elements to attenuate the response. Examples of problems that could

benefit from this research are ground vehicle response and equipment

or instrument vibrational response. These problems use passive isola-

tors to minimize the vibrational response.

As a preliminary step toward the study of active structural vibra-

tion, the passive vibration is studied in this research. Most Aerospace

structures of the future will use active vibration isolation to attenuate

the response. The active vibration isolation problem would contain the

same constraints used in this study with the addition of control forces

to the state equations and to the objective function - Large space

structures would use active vibration isolation to control the response

of the very flexible structural systems.

The algorithms that are developed in this research are consistent

with the minimum weight problem which is not considered in the present

study.

This research considers constraints that are displacements,

accelerations and natural frequencies. The design variables are linear

changes to mass, stiffness or damping matrices. The constraints can

be expressed in either the time or frequency domain and the cumulative

constraint is used to measure the amount of constraint violation. It

is shown that the variation of the displacements or acceleration constraints

are shallow in reciprocal design variables. The objective function

represents a design variable that restrains displacements or accelerations

to be less than a maximum value.

These algorithms have been studied for transient response, frequency

response and stationary random. No attempt was made to consider ill

conditioned vibrational problems that occur between a structure and

isolator elements that are designed to move independent of the structure.
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2. 'Trasifnt R spnse

The minimization of displacements or accelerations can be

formulated as a MN-MAX optimization problem.

(1) MIN (MAX txI:)

V (2) KY=)MY

(3) MX + Ci. +X J P

(4) MAX jX (t) -, (1 t) I <x

~ L "U) N
(6) K aK 0  EaK

(7) M M EmF.M.

(8) C-CO+

(9) <
Ili I - U

Only the direct method Of solution has been considered in this

study. These algorithms can be used with the modal formulation and
a seperate section references the recent work completed using modal

analysis.

Equation (1) minimizes the maximum acceleration in the time

domain. The objective frnction could be displacements instead and the

present algorithms could be used directly. Equation (2) is the

eigenvalue problem whose inclusion permits the use of frequencies in

4
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equation (5) in the analysis. Equation (3) is the structural dynamic

equations in matrix form which describe the displacement response X(t).

Equation (4) is the so called relative displacement or rattlespace

constraint. The present algorithms can include this type of constraint

in the analysis. However, no specific numerical examples are presented.

using the rattlespace constraint. Equations (6), (7), and (8) show

the linear changes to the stiffness, mass or viscous damping matrix

with the design variables a The design variables could contain

differing sets in equations (6), (7), (8). Equation (9) lists the

constraint limits on the design variables a

S



3. Frequency Response

Sometimes, it is convenient to solve vibration problems in the

driving frequency u domain. This is true for problems which have

experimentally available results for transfer functions. Also, for

stationary random analysis, the frequency domain transfer function

must be determined. Equation (3) is transformed to the steady

state frequency domain by,

(10) X - RE {Xe i t} , P = RE{P e I
0 0

where RE: denotes real part of

i -

W: driving frequency

X amplitude of harmonic response
0

Po: amplitude of harmonic loading

For the harmonic substitution, equation (3) becomes,

,l2M +-J iWc + y.)X ° -po,
0 0

The amplitudes Xo , P0 are complex numbers. Equation (11) may be solved

repeatedly for Xo given P0 and w using complex arithmetic. It is more
convenient to use the real displaceomt components in the analysis, The method of

reference (I) is used to work with the real and imaginary components

of X0 .0

X U U-iV
0

(12) -0 A. WC U P0

70

W aC W2M + y V 0

6



The optimization becomes in the frequency domain,

(13) MIN (MAX (W2 / .T =V)

(14) KY - XY

oJ -

(12) -K +

(19) 14AM X Z(ziw(

(20) C KC0 + Eai Ci
0 ii

Equation (13) is the amplitude of steady state acceleration and equation

(15) are the structural dynamic equations to be solved.

7
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4. Stationary tandon

AFrequency Response solution is first analyzed to determine th

- -: transfer function H(W) which is either the displacement or acceleration

at a response point of interest. The spectral density of the output

* is given in terms of the spectral density of the input for a single

input/output system is given in reference (2).

~0 ~) IH0)I 2S~w

The same reference also lists techniques for analyzing multiple

* input/output systems. The mean square value can be calculated for

any frequency interval,

0

Various performance measures have boen proposed for random analysis

such as using either the spectral density or mean square value. The

optimization problem for stationary random becomes,

* (22) MIN (MAX S
0

(23) KY - ANY

(24) W2M+ K UC 0

W~C wMK V0 l

8
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(27) K =K + Za.K.0 1.'

(28) M = M + Za.M.0 3.1

(29) C - C + Za.C.

(30) aiL < ai < aiU

The maximum displacement or acceleration spectral density is the

objective function to be minimized in equation (22). Only the single

input/output case is used to calculate the spectral density by equation

(25), the objective function is converted to a set of equivalent

integral constraints and the minimization is done then on the mean

square response in effect.

9
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5. Cumulative Constraint and MIN-MAX Problem

The cumulative or equivalent integral constraint has been used in

the optimal control literature (3 )to convert many discrete points in

the t1me domain to one equivalent integral. Thus many discrete constraint

equations are lumped into one equation. The cumulative constraint measures

the total amount of constraint violation. If a satisfied constraint is

of the form,

(31) 0(t) _O all t.

The brac function measures the amount of constraint violation,

-. (t), *(t)> 0

0 , O(t)< 0

A constraint totally equivalent to (31) is,

(32) f<0(t)> dt = 0

Equation (32) is not identically zero if the constraint (31) is

violated. Instead of using (31) at many discrete points in

time, one total constraint (32) is used which measures where the

constraint (31) is violated.

The objective function (1), (13) or (22) can be converted to a

*' simplier algebraic form.

Consider equation (1),

MIN (MAX IXct)I )

This minimization is equivalent to minimizing an additional design

variable a such that

10
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MIN

JXt)I-< 0 for allt

The acceleration constraint that was just introduced can be converted

to a cumulative constraint.

The MIN-MAX part of the optimization becomes,

MIN 01

(33) .r<Jix't:I -a > d.t - 0

To account for the absolute value of acceleration, the integral

is written

,r dt = 0

I X -C, X> CL

I = -X-a,- X > L

I = 0 otherwise

The objective functions (13) or (22) in the frequency domain are

computed in the same manner with frequency replacing time in the integral.

The inner problem or the maximization in this research was done

by function evaluation. This is efficient for the transient problem,

but the frequency response problem requires a decomposition for each

driving frequency in equation (15). It would be required to reduce the

basis of equation (15) by using the real normal modes for efficient

solution in locating the maximum. Reference (1) recommends performing

a one dimensional search on the variable w to locate the maximum, This

* 11
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one dimensional search would roquire several initial starting points to
insure convergence to the maxim=m of the nonlinear problem in W.
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6. Reciprocal Design Variables

For statically determinate structures, stresses and deflections

- are proportional to design variables that are linear changes to

stiffness such as areas of rods in truss members. For indeterminate

. structures, this is only an approximation. It was investigated in

references (4,5) and found that high quality explicit expressions

for stresses and deflections could be generated using a first order

Taylor series expansion in reciprocal design variables. That is,

the design variable space for stress and static deflection is shallow

in reciprocal design variables. The linearized Taylor series expansions

represent lines that are very good approximations to the exact constraints.

The expansion of a response quantity 0 is done in the reciprocal design

variables ,

(34) +=0
0i

(35)1.'.--(36:) ao = -o  t ;O

1

(36) GuG0 -

"::i The mass, stiffness and damping matrices are linear functions of

the design variables a. The derivative o a general matrix G in the

1
(38) 3G G.

(39) 3G

Cg. =G

13



The derivative can be calculated by setting the linear property
equal to one in the element matrix G. and multiply by the square of
the design variable. The same subroutine used to calculate element I
matrices can be used to form the above derivative.

142

-

14,

S.

.



7. Analytic Derivatives

The direct solution of the dynamic response equations in the

time domain uses an efficient implicit equation solver such as Newmark

integration. The same technique could be used in the modal formulation

if coupled real mode damping matrix exists. This would be the most

general capability for solution of the dynamic equations. The Newmark

integration equations (6) are listed for one set on integration

. - parameters,

(4C) MXt+ CXt2 t KX t
2 4 2 2

(41) K K + ()2M + C

(42) PP 2 + M 4 2""4

+ C IPt 1 + t.,

(43) KK( •Xt2 PP t

2 2t(44) .. 4 X - b 2 t - 4~~ 1  1

(45)X * At At
(45) ~ X +I X4  + 2 Xt

'2 '1 ' 1 2

The displacements at the next time step are calculated by equation

(43). The matrix KK is only factored when the time step 4t changes.

The acceleration and displacments are recovered by equations (44) and

15.
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(45). The derivatives of the response quantities (7) are found by

differentiating equations (47) THRU (45). This is the pseudo loads

technique. The derivatives with respect to the reciprocal variables

are,

(46) ax + t

(47) aKK 3K 2 C

8 - =.'i + -2

+ .l

a 4P t2 2-2 +_ 4 t

axiat t

6+ C8 2 -'12 €

and acceleration must be calculated and saved for all degrees of freedon
in the finite element model at two neighboring points in time. The KJK

- 2 +

matrix in (46) was decomposed in the response calculations and would not

be factored again in this step.

The pseudo loads technique was applied to the structural equations

(24) in the frequency domain.

16
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As discussed in reference (8) , frequency constraints are inherently

nonlinear, Reference (9) suggests if the structure has large fixed masses,

direct design variables and a linear Taylor series expansion should be

used. To use frequency constraints in the present research, the inverse

eizenvalue \ * should be used,

KY AWJ4

A*KY = MY
i1

The justification follows from the Rayleigh quotient:

YTM y + zayTMiY
0 i i

YTK Y + Ea YTK.Y

where the mass and stiffness are given by equations (6), (7) or 7.

(18), (19). -"

For large fixed masses, M dominates the top of the ratio. The
0

reciprocal eigenvalue contains a. on the bottom. The eigenvectors Y
are functions of the design variables, but enter in the same manner
at the numerator and denominator. * might be best represented in B.

space.

The derivative is well known and given in reference (10):

(52) =i T rK ami. - y.
acsj acji: -a:I,

This derivative has to be expressed in terms of the reciprocal

design variables and reciprocal eigenvalue.
1 A*

A 1 8 1

18
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8. Linearized Constraints

The acceleration cumulative constraint has the following first

order Taylor series expansion in the reciprocal variables.

(54)
fT idt=0
0

where X . £  6BforX as

I--x - 30B , for- >0a$~

I 0 For X otherwise

This constraint is numerically integrated by a modified trapezoid

law which finds those response points above a line for which the constraints

are violated. The algorithm interpolates to find the points where the

actual constraint is violated.

The steady state acceleration amplitude in the frequency domain is,

A =w 2  + V2

where X-U- iV is the amplitude of steady state displacement.

The first order Taylor series expansiOn for the acceleration P

amplitude magnitude is,

(ss)

fSI d w O

where I-A Z +u a

20
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The acceleration spectral density of the output can be expressed

in terms of the spectral density of the input and the transfer function

for a single input/output system.

SO (W) = W4  H(0) (2S()

Where the transfer function is the displacement at the response point.

To utilize the same approximation as the frequency response

acceleration constraint equation (55),consider the square root spectral

density.

s= - =c, 2 IH (c~yj.'S, (

To modify (55) for acceleration spectral densities, the w2 is

multiplied by 47w7.

(56) 1ox dw = 0

where 0o2  "S ( (IM
i. s 2 2 z

0 V- U8

A formula could be derived for multiple sources with cross correla-

tion in a similar manner. Equation (56) developed with this algorithm

is the square root mean square acceleration that exceeds a specified

value in the frequency domain.

21
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9, Modal Method

The direct method was analyzed in this research, but the developed

algorithms could be used with the modal analysis method with the addition

of the following algorithms.

The structural dynamic equations are first converted to modal

amplitudes as the degrees of freedom.

X =yZ

(57) (YTMY)Z + (yTcy)Z (yTKy)Z yTP

The generalized mass and stiffness are diagonal, but the modal

damping is in general a coupled matrix as the result of being transform

by the real eigenvectors Y. When derivatives are calculated for equation

(57) it becomes necessary to differentiate the eigenvector. The research

presented in reference (11) should be used to efficiently calculate the

eigenvector derivative if large changes have been made to the structure.

If only isolator changes are made, usually only small changes are made

to the structure.

In such a case, the eigenvector derivative would not be needed.

A direct modal solution was done for a problem of this type in reference

(12). In this problem the information could be accurately calculated

in the Ritz eigenspace of the current design. A direct modal solution

could also be used with the present research. The algorithms of the

present research should replace the very inefficient one developed in

reference (12).

22



10. Sequential Linear Programming

The problem considered in this research of minimizing a linear

design variable subject to constraints on displacements or accelerations

in the time or frequency domain is an almost linear problem in reciprocal

design space. It is only natural to use sequential linear programming

as the optimization algorithm. A primal-dual linear program which is

listed in reference (13) was used as the optimizer. Sequential linear

programming is described in reference (14). Reference (15) has shown

the dynamic response optimization problem to have a disjoint design

space. Sequential linear programming (14) is capable of solving such

a nonconvex problem.

The design variables (9), (21) are converted to the reciprocal space,

(58) 1 8<1

iu U -iL

The actual design variables were the changes ,

(59) t1

where .i is the current reciprocal design variable.

The design variables 06 are not restricted in sign, Linear

programming requires the design variables to be non-negative. This

requires the design variable to be converted into the difference of

two non-negative variables.

(60) -

+" > o 0; > o0

The bounds on 51 become,

.23
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(61) 1 - 1 < as~ - 8. 1 -

Ciu . 1iL 

To maintain linear approximations, the design variable 88i is also

bounded by a move limit M which is taken as a percent change from the

current design point,

(62) 168.1 . i

The bounds on the new design variables in equation (61) become,

(63) <

0 < < MIN Mi 1- . MM . .)

I ~ 12

The remainder of the optimization algorithm is converted by

equation (60) to the 6B, SO: space. For example, the acceleration

constraint (54) in the time domain becomes,

T
I I dt=0

0

where I = ° ( X - -

0 E -r~ 60 wO 68i) 0
for X > 8

.2 ax * ax
Xw

IuX 1. i- . )-

-x >_

I - 0 for X otherwise

24



The frequency constraint is changed similarly. At the end of each

linear program, the new design variables are recovered by,

(64) +i B6 60i

CL.-

12
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11. Ill Conditioning

As mentioned previously, the vibration isolation problem can be

ill conditioned. Isolators are designed to move independently of the

main structure. This would require the properties to be several orders

of magnitude less than the surrounding structure and conditioning

problems would then arise. An approximate way of dealing with this

situation which was done in reference (12) is to use modal synthesis.

The main structure is modeled by component modes and the isolators

are included at the syntheses time. If the generalized mass, stiffness

and damping are of the same order of magnitude as the isolator proper-

ties, the problem will become well conditioned. However, this method

is approximate and no error estimates are available for it,

Large space structures are very flexible and inherently ill

conditioned. More accurate techniques would have to be used for prob-

lems in this category.

A method for solving ill conditioned eigensystes is presented

in reference (16), but it may require modifications to be efficient

for structural problems. A method for the solution of ill conditioned

stiffness matrices is presented in reference (17) and it might be

possible to modify it for the generalized eigenyalue problem, The

numerical integration schemes for stiff equations are presented in

reference (18).

26
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12. Numerical Applications

Transient Response:

The model of reference (1) shown in figure 1 was subjected to the

displacement inputs f 1 (t) and f 2 (t) shown in figure 2. This model

represents a vehicle running over a bump. The transient step size

used was .1 sec and 39 time intervals were calculated. The five

springs were used as design variables with limits shown on figure 1.

The objective function was a design variable which represented the

maximum acceleration at point 1 in the model over the 3.9 sec time

of response. The acceleration constraints were made active when

the acceleration bound was 99% of the maximum, Figure 3 presents

the decrease in acceleration at point 1 in the model versus the

required number of structural analyses. By equation (60),each design

variable is converted into two so the total number of design variables

used in the linear program was eleven. Initially, the reciprocal
variables were constrained by a move limit to lie within +25% of

the initial values. Convergence was obtained at iteration three.

The spring rates found at the optimum were,

ki = 51.2 lb/in

k2 ' 200.lb/in

k 3 a 200.1b/in

k 1600. lb/in

k - 1000. lb/inr 2The minimum acceleration obtained was 228.8 in/sec2
. Figure 4

presents the initial response versus the optimal one.

27
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An indeterminate beam composecL of rods, shear panels, springs

and concentrated masses is shown in figure 5. The two point masses were

subjected to a harmonic force input of

1000 SIN (7t) 0 <t <sec
f~t) = f

0 2 sec <t

Eight design variables were used in the analysis, 3 rod areas

at top and bottom and the two scalar springs. The two vertical rods

inside the shear wall remained unchanged at the initial area of the

assembly. The vertical displacement response of the top two response

points were required to be less than, the 9th design variable. This

problem validated the extension of the method to finite elements and

multiple response points.

This problem is also staticaily indeterminate and the reciprocal

design variables used in the analysis were only an approximation. A

lumped mass model was used for the rods and shear panels. The shear

panel used was the hybird one derived in reference (19). The damping

used was C = .01 LB-SEC/IN and a scalar viscous damper of this magnitude

to ground was applied at every degree of freedom. Figure 6 presents

the decrease in the maximum displacement vs structural iteration.

Convergence was achieved at iteration 3 when the maximum displacement

went from an initial value of .0166 IN to .0082 IN at the third iteration.

The rods at the optimum all reached the upper bound of 2 IN2 and the

28
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scalar springs had the value of 51,20 LB/IN which were near the lower

bound but not exactly equal to it,

Throughout the optimization, the symetry in the problem was

preserved. This problem could be ill conditioned when the spring rates

were more than a power of ten smaller than the lower limit. Typically

isolator elements are designed to vibrate independently from the surround-

ing structure. Vibration isolation is inherently ill conditioned for this

reason, and this research has not considered the ill conditioned problem.

-77
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Frequency Response:

The model shown in figure 1 was subjected to equal inphase displace-

ment inputs fl(t) - f 2 (t) S 5 coswt at the tire. This would represent a

vehicle on a shaker table. The five springs were used as design variables

with the limits shown of figure 1. The acceleration amplitudes were

evaluated between S RAD/SEC and 44 RAD/SEC in steps of 1 RAD/SEC as the

driving frequencies. The objective function was the maximum steady state

acceleration amplitude at point 1 over the range of driving frequencies.

The acceleration constraints were made active when the acceleration was

99% of the maximum. Figure 7 presents the decrease in acceleration

amplitude at point 1 in the model versus the required number of structural

analyses. Initially, the reciprocal variables were constrained by a move

limit to lie within 125% of the initial values. When a step was not

minimizing, the percent move limit on the reciprocal variables was

decreased by 50% and the linear program was resolved at the previous design

point. Convergence was achieved at iteration 7 which was close to the

value found at iteration 5.

The spring rates at the optimum were as follows:

k - 52.9 LB/IN

k 231.2 LB/IN

k - 215.1 LB/IN

k a 1000.0 LB/INL 4
k • 13110 LB/IN

30
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2
The minimum acceleration amplitude was found to be 318.7 IN/SEC

Figure 8 compares the initial acceleration amplitude in the frequency

domain vs the optimized response.

3
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Stationary Random Response:

The model shown in figure 1 was subjected to a random displacement

at the tire patches as discussed in reference (20) with parameters that

correspond to a smooth highway. A Frequency Response solution is first

completed with a unit harmonic displacement e it at the front tire and

a unit displacement with phase lag ei"  - at the rear tire with
L

phase angle b = The spectral density of the output in terms of the

spectral density of the input and transfer function is,

S () = IH(w) 12 S )
0

The transfer function is determined by using the acceleration output

of the frequency response solution due to the unit harmonic input.

The spectral density acceleration was evaluated between S RAD/SEC and

44 RAD/SEC in steps of 1 RAD/SEC. The objective function was the design

variable representing the maximum acceleration spectral density.

The acceleration constraint was made active when it was 99% of the

maximum. Figure 9 presents the decrease in the objective function versus

the required number of structural analyses. The reciprocal spring rates

were constrained by + 25% of the current value as move limits. At the

detection of each infeasibility, the move limit was reduced by 50% of

the current percent.

Convergence was achieved at iteration 3.

The spring rates at the optimum were,
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K, w 51.2 liIN

K = 200. LBIN
2

K =200. LBIN
* 3

K4 1000L /IN

K = 2000. LBIN

2 2
The miinimum spectral density was 49.61 (IN/SEC) /Hz. The initi~l

and optimized spectral densities are presented in figure 10.
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Transient Response with Frequency Constraints:

The model shown in figure 1 was again used with the same constraints

and loading condition. An additional constraint was added on the inverse

frequency:

2Y 2

l sec,2 X< 3eC2
00< T)

A 10% move limit was imposed initially on the design variables and

each time an infeasibility was found, the move limit was decreased by 50%.

The minimum acceleration found was 286.9 IN/SEC 2  after six structural

analyses. The analysis was done in both the direct eigenvalue and inverse
eigenvalue space with the same convergence properties. Figure 11

presents the decrease in acceleration vs structural analysis in the inverse

efgenvalue constraint. Near convergence was achieved at four analyses,

but no conclusions concerning the eigenvalue constraint could be inferred

from this problem.

r
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13. ConclUsions

The vibration isolation problem can be efficiently analyzed

expressing the displacement or acceleration constraints as a first order

Taylor series expansion in reciprocal design variables. The cumlative

constraint folds many discrete constraints into a single one.

The method for approximating the displacement or acceleration

constraints is consistent with the current algorithms for weight

minimization.
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Z2. kI z1

112C3 3 kI

2 2 4I 1
M1 =20 b C =0lb-Tci

M5 G9. lb. 4 b-sc

50lb/i = 10 lb./i C = 500 lb. /in
KL2 2 = 200W lb./i C~30lb/n2  = 100 lb./in/i

KL3 N = 200 lb.ir C4 =) 5b/i KU3 .100 lb/if

KL, = 100 lb./in K, = 150 lb./in KU4 = 200 lb./in

KL5  MW00 lb. /in K5  M 50 lb./in K1J5 MW00 lb./in

.4FIGURE 1: OPTIMIZATION MODEL
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AMPLITUDE X= 5

VEHICL.E SPEED S =450 IN/SEC

WHEEL BASE L =120 IN

i 360", d 144"

wl= -rs =1. 25Tr

i!di

w2 = = 3.125r
d2

=l/s .8 sec, ta= (dl+d 2) S 1.12 SECS S

TIME LAG FRONT TO REAR tL
tL = .2667 SEC

S

FRONT WHEEL DISPLACEMENT

= x( - Coswt) O4ttt

f,() xo(l + cosw (t-tl)) tlt't2

REAR WHEEL DISPLACEMENTIi I2 (t) =fl (t-t2) Oet-t t-t2 '

FIGURE 2: TRANSIENT DISPL.ACE"ENT INPUT FOR FIGURE 1
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1004 100"

100 1o" io"

K K

LOWER LIMIT INITIAL AREAS UPPER LIMIT

.5 IN 1 IN 2 IN?

E = 10x1O0 PSI M = .005 SLUGS

G /.IxlO' PSI

-3 "= 8,79x 10 SLUGS/IN 3 C = .01 LB-SEC/IN

S .1 IN

• i1

LOWER LIMIT INITIAL K UPPER LIMIT

50,000 LB/N. 100,000 LB/IN. 200,000 LB/IN.

FIGURE 5: RODS, SHEAR PANELS, SPRINGS AND MASSES
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